Renal Pathology as a Predictor of Complement Dysregulation in C3 Glomerulopathy

Jillian Hall¹, Lauren Fergus¹, Tina Liu¹, Monica Hall^{1,2}, Patrick D. Walker³, Richard J. H. Smith^{1,2}, Carla M. Nester^{1,2}

¹Molecular Otolaryngology and Renal Research Laboratories, ²University of Iowa Hospitals and Clinics, ³Arkana Laboratories

Background

C3 Glomerulopathy (C3G) is characterized by complement dysregulation and resulting C3 deposition in glomeruli. We reviewed the characteristics of the baseline kidney biopsy in a cohort of patients with C3G to determine if biopsy features of activity and chronicity correlate with complement dysregulation across the disease course.

Methods

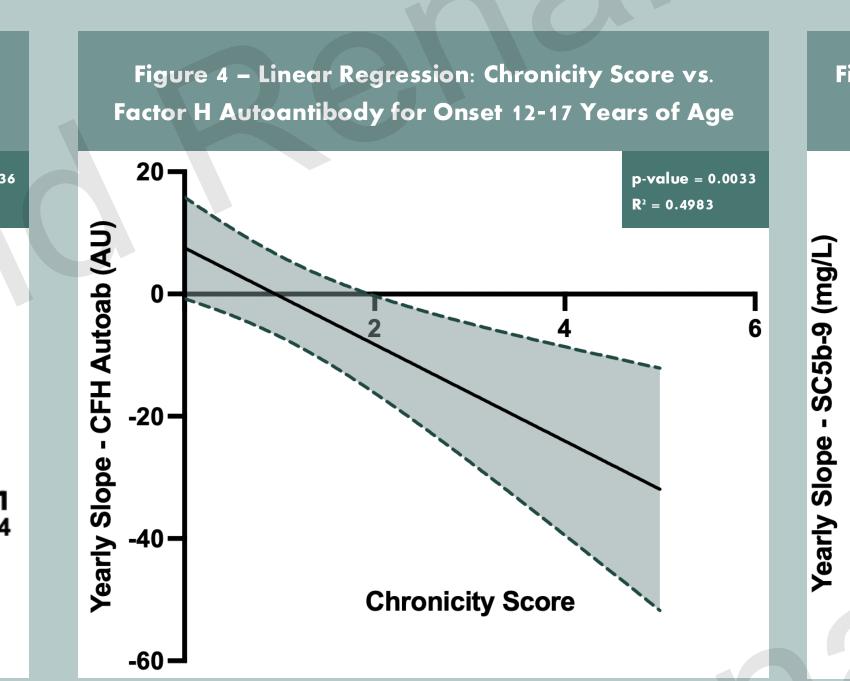
Patient data from the University of Iowa's C3G Natural History Study were used. Criteria for entry included baseline native biopsy diagnosis of C3G and complement biomarkers within one year of diagnostic biopsy. Patients with a history of dialysis, transplant, or anti-complement therapy were excluded. Significance was assessed using linear regression with two-tailed p values (95% confidence); results were considered statistically significant when p-values were less than 0.05.

We are grateful for the support of families with C3G,
The Bruder Family and the NIDDK: R01 110023

Molecular Otolaryngology & Renal Research Laborator

References

Kidney Int. 93(4):977-985, 2018
 Clin J Am Soc Nephrol. (7):994-1007, 2022
 Am J Kidney Dis. 77(5):684-695.e1, 2021.


Results

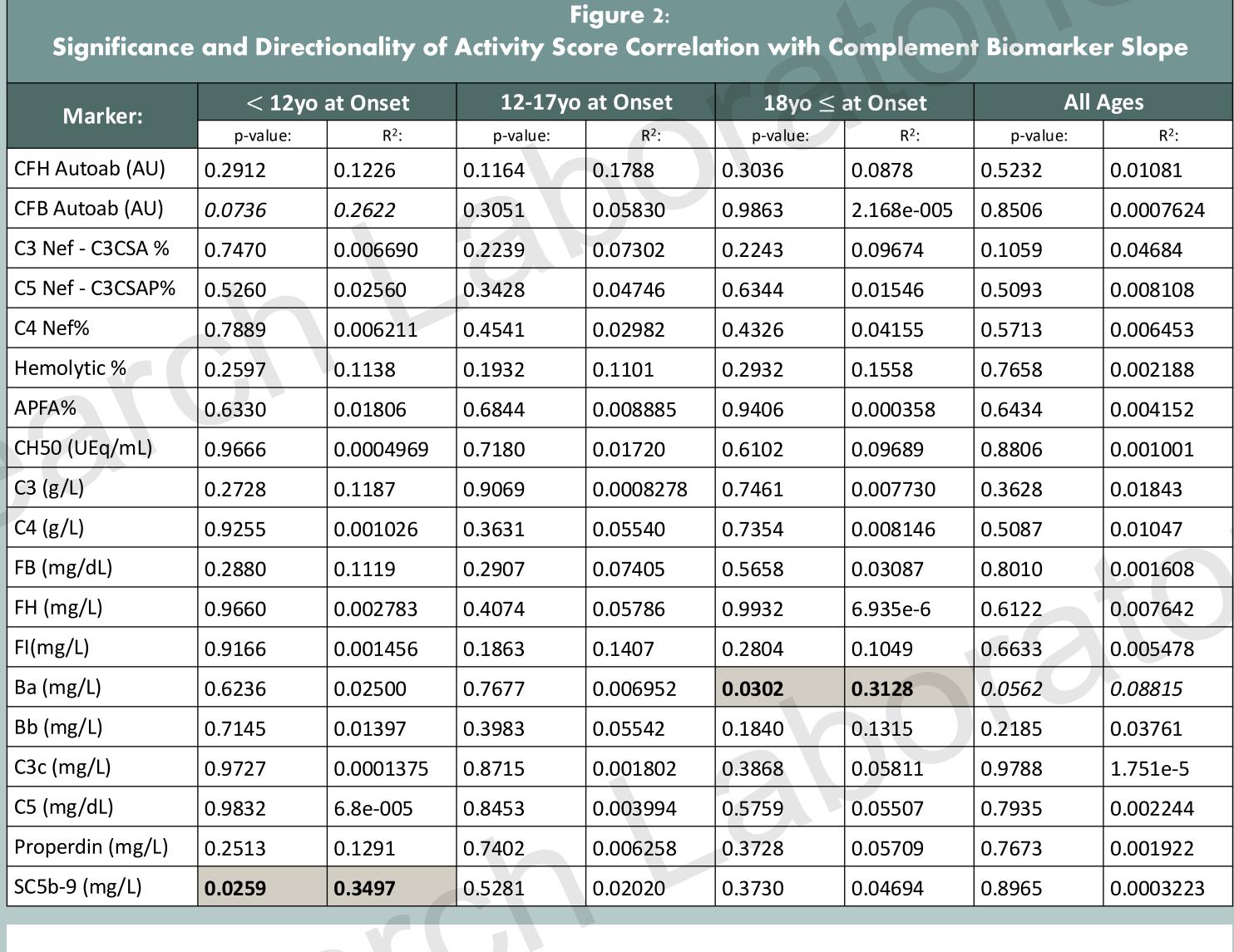
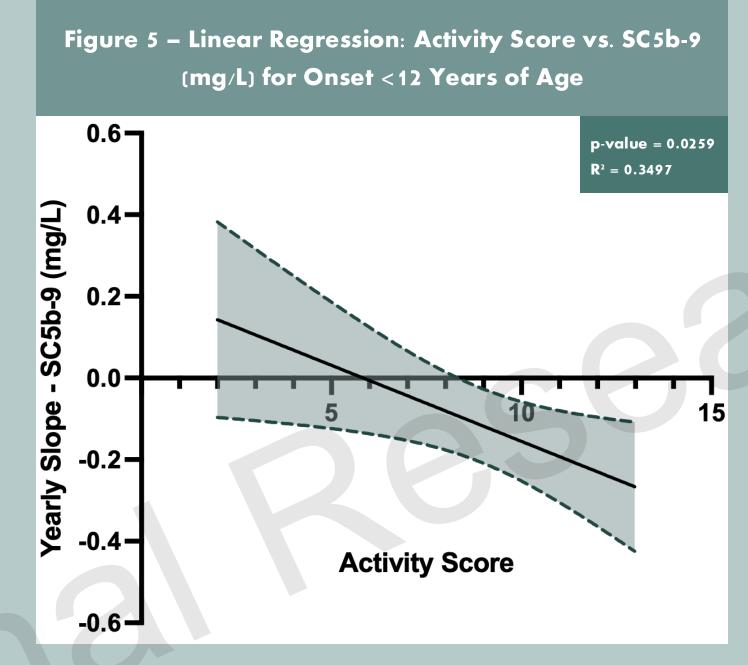
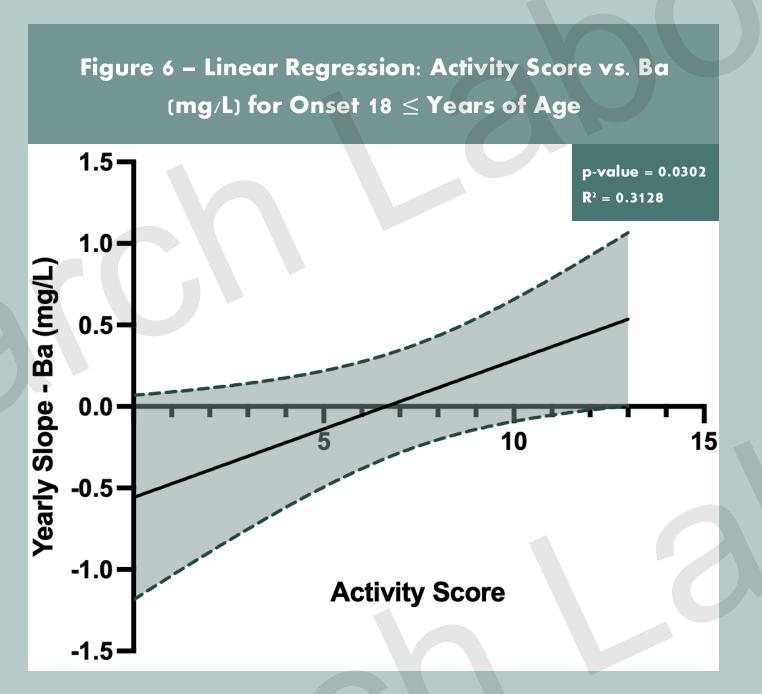

Figure 1: Significance and Directionality of Chronicity Score Correlation with Complement Biomarker Slope								
Marker:	< 12yo at Onset		12-17yo at Onset		18yo ≤ at Onset		All Ages	
	p-value:	R ² :	p-value:	R ² :	p-value:	R ² :	p-value:	R ² :
CFH Autoab (AU)	0.8079	0.006915	0.0033	0.4983	0.3502	0.07299	0.6541	0.005338
CFB Autoab (AU)	0.8701	0.002542	0.4323	0.03460	0.7421	0.008621	0.5969	0.005996
C3 Nef - C3CSA %	0.0720	0.1882	0.8578	0.001644	0.1209	0.1527	0.1138	0.04484
C5 Nef - C3CSAP%	0.0236	0.2812	0.58961	0.01589	0.1414	0.1384	0.2261	0.02702
C4 Nef%	0.5178	0.03568	0.0639	0.1693	0.9175	0.0007393	0.1394	0.04317
Hemolytic %	0.5496	0.03349	0.5488	0.02447	0.9614	0.0003598	0.9343	0.0001678
APFA%	0.0945	0.2002	0.1363	0.1130	0.5837	0.01918	0.6507	0.003972
CH50 (UEq/mL)	NI	NI	0.9161	0.002474	0.1822	0.4992	0.4485	0.02520
C3 (g/L)	0.4897	0.04891	0.7249	0.007474	0.5106	0.03153	0.6832	0.003735
C4 (g/L)	0.8971	0.001962	0.1712	0.1210	0.8986	0.001202	0.2630	0.02974
Factor B (mg/dL)	0.2928	0.1098	0.2647	0.08215	0.2539	0.1164	0.6194	0.006224
Factor H (mg/L)	NI	NI	0.8306	0.003967	0.6229	0.02274	0.7801	0.002324
Factor I (mg/L)	0.0343	0.4479	0.2096	0.1278	0.4986	0.04262	0.1618	0.05516
Ba (mg/L)	0.7088	0.01455	0.3337	0.07197	0.0990	0.1954	0.2413	0.03416
Bb (mg/L)	0.4829	0.05043	0.4706	0.04076	0.2568	0.09767	0.9770	2.106e-5
C3c (mg/L)	0.5841	0.03457	0.9853	2.347e-5	0.3899	0.05738	0.5434	0.009076
C5 (mg/dL)	0.1230	0.3052	0.4856	0.04981	0.9401	0.001021	0.4851	0.01585
Properdin (mg/L)	0.2432	0.1333	0.3651	0.04578	0.3860	0.05411	0.9528	7.704e-5
SC5b-9 (mg/L)	0.5515	0.03033	0.3620	0.04170	0.2748	0.07772	0.5242	0.007696

Figure 1: Of the 59 subjects, 12 (20.3%) presented with a chronicity score ≥ 4, indicating an increased risk for progression to renal failure¹. Among patients with disease onset before age 12 (n = 18), higher chronicity scores were associated with increased C5 nephritic factor (Figure 3) and increased Factor I (mg/L) levels over time. Of those with disease onset between ages 12 and 17 (n = 22), higher chronicity scores were associated with decreased Factor H autoantibody (AU) levels over time (Figure 4). At disease onset, chronicity scores were significantly correlated with Ba (mg/L) (p = 1.74e-09, R = 0.663) and APFA (%) (p = 0.002, R = 0.314); however, these associations did not persist across the disease course. No significant associations were observed between chronicity scores and changes in complement biomarkers over time in patients with disease onset at age 18 or older (n = 19) or in the overall cohort (n = 59).


Figure 3 – Linear Regression: Chronicity Score vs. C5


Nephritic Factor for Onset <12 Years of Age

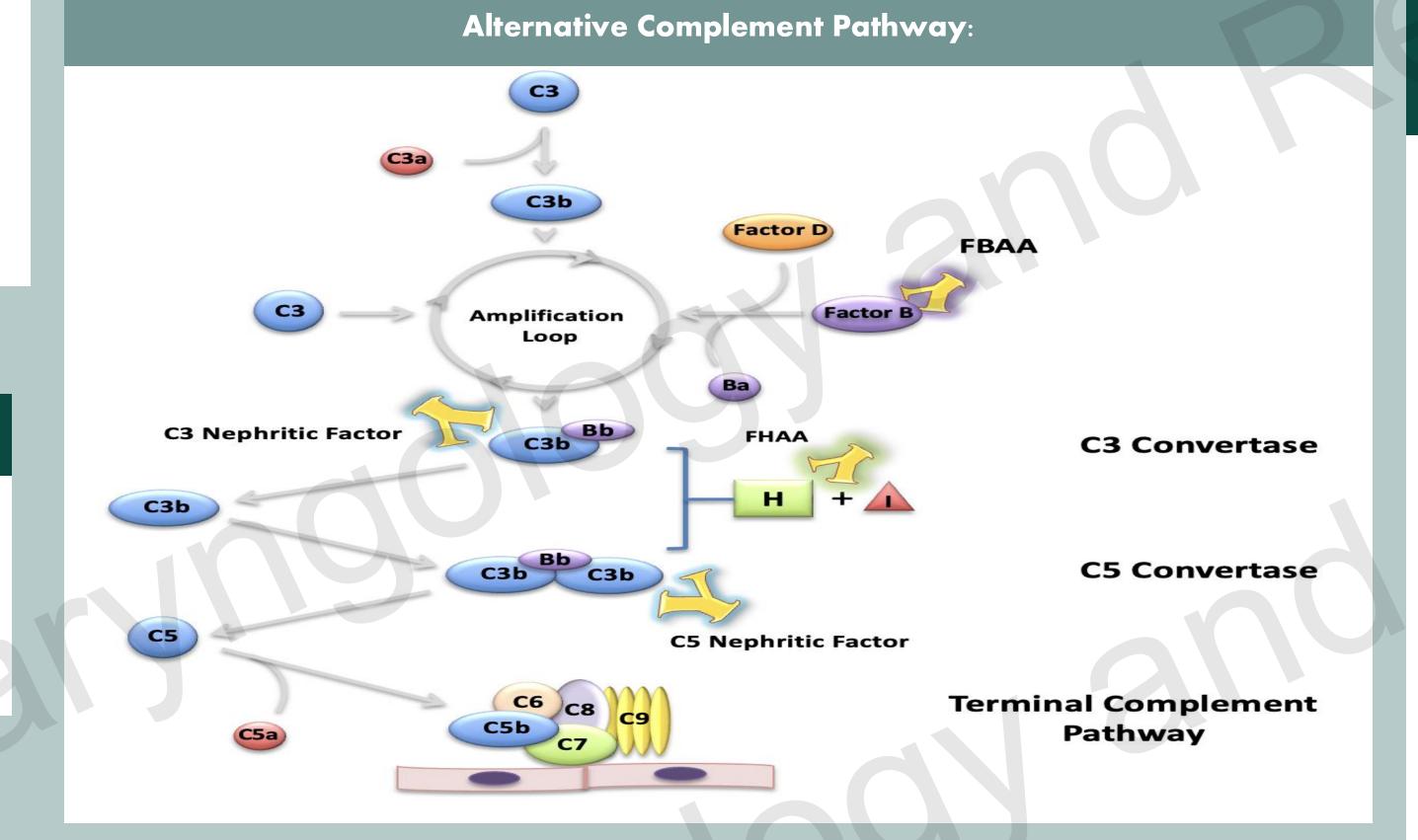


Figure 2: Of the 59 subjects, 35 (59.3%) presented with an activity score of ≥ 9 indicating increased risk for progression to renal failure¹. Among patients with disease onset before age 12 (n = 18), higher activity scores were associated with decreased SC5b-9 (mg/L) levels over time (Figure 5). In those with disease onset at age 18 or older (n = 19), higher activity scores were associated with increased Ba (mg/L) levels over time (Figure 6); in the overall cohort, the relationship between Ba levels and activity scores approached significance. No significant associations were observed between activity scores and changes in complement biomarkers over time among patients with disease onset between ages 12 and 17 (n = 22). Additionally, no significant relationships were found between activity scores and complement biomarkers at disease onset.

Conclusions

Previously, we reported that at disease onset, chronicity scores were significantly correlated with Ba and APFA. These associations did not persist over time. Over time, in the preadolescent group (< 12 years old), three findings were identified: a correlation between elevated C5Nef and FI with the chronicity score, and a correlation with elevated sC5b-9 and the activity score. Similarly, over time, in the adult group (>17yo), there was only one statistically significant correlation: a correlation between increasing Ba and the activity score. When considering a multiple comparisons model of evaluation, no significant correlations were found. A major limitation of this survey is undoubtedly the sample size.