VALIANT: Randomised, multicentre, double-blind, placebo-controlled, phase 3 trial of pegcetacoplan for patients with native or post-transplant recurrent C3G or primary (idiopathic) IC-MPGN

Carla M Nester;¹ Andrew S Bomback;² Gema Ariceta;³ Yahsou Delmas;⁴ Bradley P Dixon;⁵ Daniel P Gale;⁶ Larry A Greenbaum;⁻ Seung Hyeok Han;⁶ Nicole Isbel;⁵¹¹ Christoph Licht;¹¹ Antonio Mastrangelo;¹² Masashi Mizuno;¹³ Maria Izabel Neves de Holanda;¹⁴ Matthew C Pickering;¹⁵ Giuseppe Remuzzi;¹⁶ Nicole Van De Kar;¹¹ Marina Vivarelli;¹⁶ Patrick D Walker;¹⁰ Dean Wallace;²⁰ Daniel Zecher;²¹ Li Li;²² Zhongshen Wang;²² Luis López Lázaro;²³ Johan Szamosi;²³ Fadi Fakhouri²⁴

¹University of Iowa, Stead Family Children's Hospital, Iowa City, IA, USA; ²Columbia University Irving Medical Center, New York, NY, USA; ³Hospital Vall d'Hebron, Barcelona, Spain; ⁴Service de Néphrologie, Hôpital Pellegrin, CHU Bordeaux, Bordeaux, France; ⁵University of Colorado School of Medicine, Aurora, CO, USA; ⁶University College London, London, UK; ⁷Emory School of Medicine, Atlanta, GA, USA; ⁸Yonsei University College of Medicine, Seoul, Republic of Korea; ⁹Princess Alexandra Hospital, Brisbane, Australia; ¹⁰The University of Queensland, Brisbane, Australia; ¹¹The Hospital for Sick Children, Toronto, ON, Canada; ¹²Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; ¹³Nagoya University Graduate School of Medical Sciences, Nagoya, Japan; ¹⁴Hospital Federal de Bonsucesso, Ruschel Medicina, Rio de Janeiro, Brazil; ¹⁵Imperial College, London, UK; ¹⁶Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy; ¹⁷Radboudumc Amalia Children's Hospital, Nijmegen, Netherlands; ¹⁸Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; ¹⁹Arkana Laboratories, Little Rock, AR, USA; ²⁰Royal Manchester Children's Hospital, Manchester, UK; ²¹Regensburg University Hospital, Regensburg, Germany; ²²Apellis Pharmaceuticals, Inc., Waltham, MA, USA; ²³Swedish Orphan Biovitrum AB, Stockholm, Sweden; ²⁴Lausanne University Hospital and University of Lausanne, Switzerland

CONCLUSIONS

Pegcetacoplan was efficacious and well tolerated in the phase 3 VALIANT trial in patients (≥12 years) with complement 3 glomerulopathy (C3G) or primary immune-complex membranoproliferative glomerulonephritis (IC-MPGN):

- After 52 weeks of treatment, patients receiving pegcetacoplan showed a **67.2% reduction** in proteinuria from baseline.
- Estimated glomerular filtration rate (eGFR) remained stable among patients who received pegcetagoplan for 52 weeks (mean change from baseline [CfB]: -3.7 ml/min/1.73 m²).
- Pegcetacoplan was well tolerated, with no new safety signals.
 Four infections caused by encapsulated bacteria were reported during the open-label period (OLP); only one case of pneumococcal pneumonia was considered serious.

BACKGROUND

- Pegcetacoplan is a targeted complement 3 (C3) and C3b inhibitor that acts centrally to block C3 dysregulation and downstream activation of the complement cascade in C3G and primary IC-MPGN.^{1,2}
- VALIANT evaluated the use of pegcetacoplan for treatment of C3G and primary IC-MPGN.^{3,4}
- Week 26 data for the VALIANT phase 3 study (NCT05067127)
 demonstrated a slowing of disease progression with pegcetacoplan
 in adolescent and adult patients with C3G or primary IC-MPGN.
 Results were published previously.⁵

OBJECTIVE

 Here, we report the 52-week data from VALIANT for the efficacy and safety of pegcetacoplan treatment in patients with C3G or primary IC-MPGN.

METHODS

- Adolescent (12–17 years) and adult (≥18 years) patients were randomised 1:1 to receive ≤1080 mg pegcetacoplan subcutaneously (SC) twice weekly,* or placebo for 26 weeks.
- The 26-week, double-blind, randomised controlled period (RCP) was followed by a 26-week OLP during which all patients received pegcetacoplan ≤1080 mg SC twice weekly.* In both arms, patients also received stable, optimised supportive care.[†]
 Patients who completed VALIANT were eligible to enter the VALE extension study.⁶
- Study eligibility criteria have been reported previously.5
- Endpoints assessed from baseline to weeks 26 and 52 were:
 CfB in the log-transformed ratio of urine protein-to-creatinine ratio (UPCR).
- Proportion of patients achieving a composite renal endpoint (defined as stable or improved eGFR compared with the baseline visit [≤15% reduction in eGFR] and a ≥50% reduction in UPCR compared with the baseline visit).
- Proportion of patients with a reduction of ≥50% in UPCR.
- CfB in eGFR.
- Treatment-emergent adverse events (TEAEs).

RESULTS

Patient characteristics

- Baseline demographics and clinical characteristics of the 26-week VALIANT study have been published previously.⁵
- VALIANT included a broad patient population aged ≥12 years, with or without previous renal transplant, and diagnosed with C3G or primary (idiopathic) IC-MPGN.
- Most patients in the pegcetacoplan group were adults; patients were, on average, 3.6 years from diagnosis and 7.9% had experienced a recurrence of C3G or IC-MPGN after transplant.
- In the placebo group, 57 (93.4%) patients completed the RCP and 55 (90.2%) completed the OLP.
- In the pegcetacoplan group, 61 (96.8%) patients completed the RCP and 59 (93.7%) completed the OLP.

Efficacy

Proteinuria reduction

- In pegcetacoplan-treated patients, proteinuria reductions were observed as early as week 4 with a statistically significant and clinically meaningful reduction at week 26 vs placebo (relative reduction[‡] [95% confidence interval (CI)] vs placebo: −68.1% [57.3, 76.2], P<0.0001) (Figure 1); results were consistent across disease type, age and transplant status subgroups.⁵
- This trend for reduced proteinuria was maintained until week 52 (mean CfB in the pegcetacoplan-to-pegcetacoplan group: −67.2%) (Figure 1).

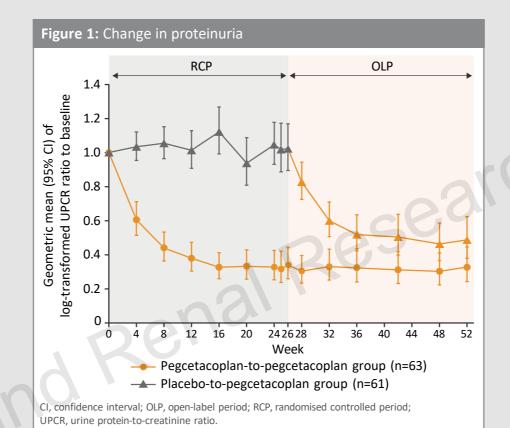
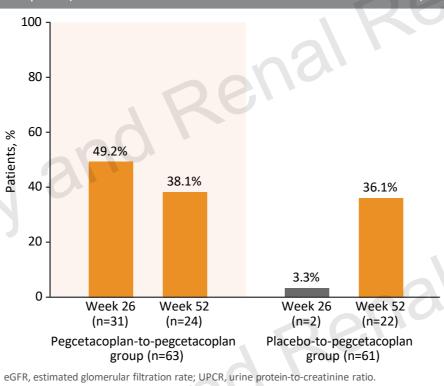



Figure 2: Proportion of patients who met the composite renal endpoint (≤15% reduction in eGFR and ≥50% reduction in UPCR)

 In the placebo-to-pegcetacoplan group, patients achieved similar proteinuria reduction after 26 weeks of pegcetacoplan treatment (mean CfB at week 52: -51.3%) (Figure 1).

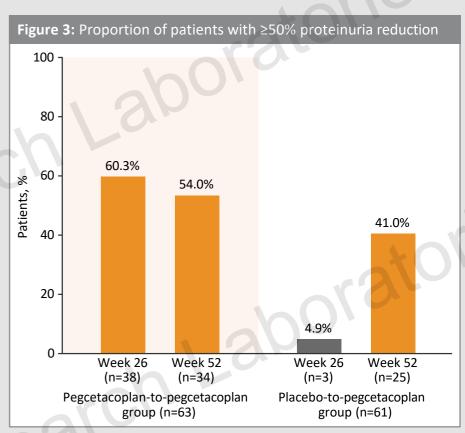
Composite renal endpoint

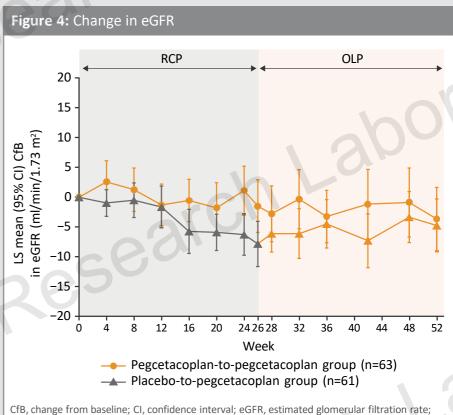
- At week 26, the composite renal endpoint was achieved by significantly more patients receiving pegcetacoplan vs placebo (31 [49.2%] vs 2 [3.3%]; P≤0.0001)⁵ (Figure 2).
- At week 52, the composite renal endpoint was met by 38.1% (n=24) of patients in the pegcetacoplan-to-pegcetacoplan group and by 36.0% (n=22) in the placebo-to-pegcetacoplan group (Figure 2).

UPCR ≥50% reduction

- At week 26, ≥50% proteinuria reduction was achieved by significantly more patients on pegcetacoplan vs placebo (38 [60.3%]) vs (3 [4.9%]; P<0.0001)⁵ (Figure 3).
- At week 52, this endpoint was achieved by 54.0% (n=34) of patients in the pegcetacoplan-to-pegcetacoplan group and 41.0% (n=25) in the placebo-to-pegcetacoplan group (Figure 3).

eGFR


- At week 26, pegcetacoplan stabilised eGFR vs placebo (least squares [LS] mean CfB [95% CI]: −1.5 [−5.9, 2.9] vs −7.8 [−11.6, −4.0]; nominal P<0.05), equating to a difference of +6.3 ml/min/1.73 m² (nominal P=0.03)⁵ (Figure 4).
- This trend was sustained through week 52 (mean CfB in the pegcetacoplan-to-pegcetacoplan group: −3.7 ml/min/1.73 m²) (Figure 4).
- In the placebo-to-pegcetacoplan group, eGFR stabilisation was observed during the 26 weeks of pegcetacoplan treatment (mean CfB at week 52: -4.7 ml/min/1.73 m²) (Figure 4).


Adherence

- High adherence rates (≥90%) were observed in most patients.
- Pegcetacoplan-to-pegcetacoplan group: 96.7% (n=59).
 Placebo-to-pegcetacoplan group: 96.5% (n=55).

Safety

- TEAE frequency and severity were comparable between treatment arms (Table 1). Most TEAEs during the OLP were mild (45 [38.1%]) or moderate (36 [30.5%]).
- Infusion-related TEAEs decreased from the RCP to the OLP for the pegcetacoplan-to-pegcetacoplan group, suggesting that tolerability improved with patient experience.

During the OLP:

- No deaths were reported.
- No allograft loss was reported.
- One patient (1.6%) in the pegcetacoplan-to-pegcetacoplan group experienced a mild rejection episode, which was deemed not related to pegcetacoplan.
- No infections caused by encapsulated bacteria were reported during the RCP.

LS, least squares; OLP, open-label period; RCP, randomised controlled period.

- Four infections caused by encapsulated bacteria were reported during the OLP: two cases of pneumococcal pneumonia, one case of streptococcal pharyngitis, and one urinary tract infection caused by *Escherichia*.
- One case of pneumococcal pneumonia was considered serious.

Event, n (%)	RCP	OLP	
	Pegcetacoplan (n=63)	Pegcetacoplan- to-pegcetacoplan (n=61)	Placebo-to- pegcetacoplar (n=57)
Any TEAE	54 (85.7)	47 (77.0)	42 (73.7)
Maximum severity			
Mild	26 (41.3)	25 (41.0)	20 (35.1)
Moderate	25 (39.7)	19 (31.1)	17 (29.8)
Severe	3 (4.8)	3 (4.9)	5 (8.8)
Treatment-related TEAE	27 (42.9)	10 (16.4)	19 (33.3)
Infusion-related TEAE	21 (33.3)	6 (9.8)	12 (21.1)
Serious TEAE	6 (9.5)	6 (9.8)	4 (7.0)
TEAE leading to treatment withdrawal	2 (3.2)	2 (3.3)	2 (3.5)
TEAE leading to dose interruption	8 (12.7)	7 (11.5)	6 (10.5)
TEAE leading to study discontinuation	1 (1.6)	2 (3.3)	2 (3.5)
TEAE leading to death	1 (1.6)	0 (0.0)	0 (0.0)
Rejection episode	0 (0.0)	1 (1.6)	0 (0.0)
Graft loss	0 (0.0)	0 (0.0)	0 (0.0)

Abbreviations: ACEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; C3, complement 3; C3G, complement 3 glomerulopathy; CfB, change from baseline; CI, confidence interval; eGFR, estimated glomerular filtration rate; IC-MPGN, immune-complex membranoproliferative glomerulonephritis; LS, least squares;

MMF, mycophenolate mofetil; OLP, open-label period; RCP, randomised controlled period; SC, subcutaneous; SGLT2i, sodium-glucose cotransporter-2 inhibitor; TEAE, treatment-emergent adverse event; UPCR, urine protein-to-creatinine ratio.

References: 1. ASPAVELI Summary of Product Characteristics 2024. 2. Lamers C, et al. Nat Commun 2022;13:5519. 3. Dixon BP, et al. ASN Kidney Week 2023, Nov 2–5, 2023. Abstract INFO12-SA. 4. ClinicalTrials.gov. VALIANT. https://clinicaltrials.gov/study/NCT05067127. Accessed 4 August 2025. 5. Nester CM, et al. ASN Kidney Week 2024. 6. ClinicalTrials.gov. VALE. https://clinicaltrials.gov/study/NCT05809531. Accessed 4 August 2025.

Disclosures: This study was funded by Apellis Pharmaceuticals, Inc., and Sobi (Swedish Orphan Biovitrum AB). Previous presentation: Data originally presented in part at 1. 57th Annual Meeting of the American Society of Nephrology (ASN); October 24–27, 2024; San Diego, CA, 2. Mayo Clinic Nephrology, Hypertension and Kidney Transplantation Update for the Clinician 2025; February 14–16, 2025; Lake Buena Vista, FL, and 3. 17th International Conference on Complement Therapeutics 2025; May 10–15, 2025; Sissi, Crete, Greece.

Acknowledgements: Medical writing support funded by Sobi (Swedish Orphan Biovitrum AB) and Apellis Pharmaceuticals, Inc. was provided by The Salve Healthcare Communications (Cheltenham, UK).

^{*}All adolescents and adults weighing ≥50 kg self-administered 1080 mg/20 ml. Adolescent patients weighing 30–34 kg received 540 mg/10 ml for the first two doses, and 648 mg/12 ml thereafter. Adolescent patients weighing 35–49 kg received 648 mg/12 ml for the first dose, and 810 mg/15 ml thereafter. ¹Stable, optimised antiproteinuric regimens: ACEis, ARBs, SGLT2is, MMF, and corticosteroids (prednisone ≤20 mg/day or equivalent) were permitted. ¹Percentages calculated by converting the ratio of geometric means to percentages.