Interpreting MORL Complement-Mediated Kidney Disease Genetic and Functional Results | GENETIC TESTING | | | | | | | | | | | | | | | | | |---|---|---|---|---|--|---|--|---|-----------------------------------|---|--|--|---|---|--|--| | Gene | | Ch | Chromosomal Location | | | | Interpretation | | | | | | | | | | | beer | ment gene that
n reported to be
red with TMAs/C | The specia | of a given gene | | | | Pathogenic known: a variant that has been proven to be disease-causing Likely pathogenic: a variant that is likely to be disease causing based on current data Unknown significance: a variant for which further interpretation is not possible based on available data Likely benign: a variant not known to cause disease | | | | | | | | | | | PATHWAYS | | | | | | AUTOANTIBODIES | | | | | | | | | | | | CH50
(41-95 Units/mL | | APFA (50-130%) | Λεερ | | Autoantibody | | FB
Autoantibody
(<200 AU) | | Fluid Phase Activity -IFE (<7.5%) | | C3Nef -
C3CSA
(<20%) | C5Nef-
C3CSAP
(<20%) | C4Nef
(<20%) | | | | | Determines whether
the CP is overactive
or whether a CP
protein has been
abnormally
consumed | | Determines whether the AP overactive or whether an AF protein has bee abnormally consumed | abnormal C3 | | binds
H (F
inter
FH fur
comp | hds to Factor binds (FB); can terfere with function and npromise AP binds | | body that
o Factor B
n interfere
th C3
vertase
ion; often
in PIGN | th | ermines if a protein
ne blood is causing
complement
regulation/activatic | converta
them f | Antibodies to C3- or C5-
convertase, preventing
them from naturally
falling apart | | Similar to C3- or C5-
nephritic factors, however
they stabilize the classical
pathway convertase | | | | | | | | | | | BIOM | ARKERS | | | | | | | | | | | C3 level (90-180 mg/dL) | C3c Level
(<1.5
mg/L) | C4 Level
(15-47
mg/dL) | FB Level (22-50 mg/dL) | | Ba
Level
(<1.2
mg/L) | Bb
Level
(<2.2
mg/L) | FD Lev
(0.78-1
mg/L | .59 | C5 Level (13.5-27 mg/L) | Properdin
Level
(10-33
mg/L) | Soluble
C5b-9
(<0.3 mg/L) | FI Level
(18-44
mg/L) | FH Level
(180-420
mg/L) | | | | High
Result | Represents
inflammation or
obesity | A breakdown product of C3, suggests overactivity of the AP | Represents
inflammation | | Represents inflammation of FB; I mean being of excess levels of | | High level products h levels sugges at FB is sumed ly; high are also n ESKD High level Factor D (F | | (FD) st ng y on we of nent | Elevated with terminal complement pathway inhibitor | | Increased
activity of the
terminal
complement
pathway | Represents
inflammation | Represents
inflammation | | | | Low
Result | Deficient because
of a gene
abnormality or
inappropriately
consumed | | Deficient because of a gene abnormality or inappropriately consumed | because
gene
abnormal
consumed | Deficient ecause of a gene normality or nsumed due overactive AP | | | 253776 | , | Suggests terminal pathway hyperactivity | Suggests
terminal
pathway
hyperactivity | Low if on
terminal
complement
blockade | Deficiency
typically
reflects a gene
abnormality | Deficiency
typically
reflects a gene
abnormality or
inappropriate
consumption | | | ^{*} AP = Alternate Pathway; CP = Classical Pathway; Nef = Nephritic Factor, ESKD= End Stage Kidney Disease; laboratory results may be significantly altered by inappropriate specimen handling; due to the extreme complexity of the complement cascade, assessing complement activity and regulation is best performed by pathway analysis, together with autoantibody testing and biomarker profiling as opposed to doing tests in isolation