

The Importance of the Mg²⁺ Ion for Nephritic Factor Function

Christopher Culek¹, Yuzhou Zhang¹, Richard J.H. Smith^{1,2} and Carla M. Nester^{1,2}

¹Molecular Otolaryngology and Renal Research Laboratories, ²Stead Family Children's Hospital

Introduction

C3-convertase (C3bBb) is formed from C3bB (proconvertase) by Factor D (FD)dependent cleavage of Factor B (FB) to release Ba. In proconvertase formation, the divalent-ion Mg²⁺ (or Ni²⁺) is chelated by FB and creates a coordinate covalent bond with the C-terminus of C3b.¹ This interaction induces conformational changes in FB that promote FD binding and expose the FB scissile bond for cleavage.² FB and Mg²⁺ also interact with Cobra Venom Factor (CVF), yet several FB conformation changes do not occur in this interaction (see Table).³ C3-Nephritic Factors (Nefs) are autoantibodies that bind to and stabilize C3bBb and cause complement dysregulation. We hypothesized that Nef-stabilization is also ion-dependent.

Methods

- Using surface plasmon resonance (SPR), we measured the binding of FB, FD, and Nef-positive IgG and the decay of the resulting complexes in various conditions:
- FB and FD were tested for C3b binding at 0mM Mg²⁺ using Dose-Response curves; (Fig 1)
- Nef samples were tested for binding specificity to Convertase and Proconvertase in the presence of 10mM Mg²⁺; (Fig 2)
- 3. Nef samples were tested for stabilizing function at 0mM Mg²⁺; (Fig 3)
- 4. Nef samples were tested for CVF-FB binding and stabilization at 10mM Mg²⁺; (Fig 4)

Results

C3b-FB association was detectable on SPR in the absence of Mg²⁺ (Fig 1). This binding represented the rapid first association rate k_{a1} , which was previously shown to be Mg²⁺-independent.² A similar association with FD was not observed. All Nef samples were able to selectively recognize and stabilize C3bB and C3bBb in the presence of Mg²⁺ as seen by the increased binding and slower decay specifically in samples containing both FB and Nefs (Fig 2). No Nef-stabilizing activity was observed in any sample when Mg²⁺ was absent as indicated by the rapid decay (Fig 3), nor was any Nef sample able to stabilize the CVF-FB interaction despite the presence of Mg²⁺ (Fig 4).

FB selectively demonstrates a dose-dependent binding relationship with C3b that is not seen between FD and C3b. This holds true despite the absence of Mg ions.

Discussion

Our data suggest that Nefs stabilize the proconvertase, C3bB, in addition to the convertase. However, Mg²⁺ was necessary for stabilizing both complexes. Specific conformation changes induced by Mg²⁺ in C3bB (but missing in CVF-FB) may be required for Nef stabilization.

Future Directions

Whether the C3b-Mg²⁺-FB interaction is functionally enhanced by Nefs or Mg²⁺ promotes necessary conformational changes for Nef binding is under further investigation.

Increased binding and stability for both C3bBb+Nef and C3bB+Nef samples. A specific interaction is not seen between C3b+Nefs or C3b+FD+Nef. This observation was consistent across five Nef-positive samples.

Note the immediate decay of the C3bB+Nef sample and the absence of C3bBb formation and stabilization by

C3bB+FD+Nefs. The stabilization of both complexes was lost in all five samples tested.

